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ABSTRACT

The performance of certain nonlinear stochastic systems is
deemed acceptable if, during a specified time interval, the
systems have sufficiently low probabilities of escape from a
preferred region of phase space. We propose an open-loop
control method for reducing these probabilities. The method is
applicable to stochastic systems whose dissipation- and
excitation-free counterparts have homoclinic or heteroclinic
orbits. The Melnikov relative scale factors are system properties
containing information on the frequencies of the random forcing
spectral components that are most effective in inducing escapes.
This information is useful in practice even if the dissipation and
excitation terms are relatively large. An ideal open-loop control
force applied to the system would be equal to the negative of a
fraction of the exciting force from which the ineffective
components have been filtered out. Limitations inherent in any
practical control system make it impossible to achieve such an
ideal control. Nevertheless, numerical simulations show that
substantial advantages can be achieved in some cases by
designing control systems that take into account the
information contained in the Melnikov scale factors.

INTRODUCTION

The performance of certain nonlinear stochastic systems is
deemed acceptable if, during a specified time interval, the
systems have sufficiently low probabilities of escape from a
preferred region of phase space. For example, the motion of a
ship subjected to wave loading may be modeled by an equation
of motion with a nonlinear restoring term (see, €.g., Hsieh,
Troesch and Shaw, 1994). Given a design sea state with a
specified mean return period, a coordinate defining the behavior
of the ship (e.g., its roll angle) must have an acceptably small
probability of exit from the "safe” region of phase space.

However, if that design sea state is exceeded, the probability
of exit from the safe region may become unacceptably large.
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That probability could be reduced -- that is, the system could be
stabilized -- by resorting to a suitable control strategy.

We propose a Melnikov-based procedure aimed at achieving
efficient stabilization by open-loop control. The proposed
procedure is applicable to the wide class of multistable systems
which have dissipation- and forcing-free counterparts possessing
homoclinic or heteroclinic manifolds. Examples are the system
just described, the rf-driven Josephson junction, the Duffing
equation, as well as higher- or infinitely-dimensional systems
(Holmes and Marsden, 1981; Wiggins and Holmes, 1987,
Wiggins and Shaw, 1988; Allen et al, 1991; Zhang and
Falzarano, 1994; Simiu and Frey, 1995; Simiu, 1995).

We review in the following section the theoretical basis of our
procedure. Next, to test its effectiveness, we use numerical
simulations for the paradigmatic case of a stochastichally excited
Duffing equation. Finally, we discuss the results and present our
conclusions.

MELNIKOV PROCESSES AND EXITS FROM A WELL

For a class of dynamical systems described later in this section,
the Melnikov approach is a technique providing necessary
conditions for the occurrence of chaos -- and of exits from
regions of phase space associated with potential wells. Originally
it was considered to be applicable only to deterministic systems,
including systems with quasiperiodic excitation (Beigie et al,
1991). However, the approach was recently extended to systems
with stochastic excitation (Frey and Simiu, 1993). One
remarkable result of this extension is that, under certain
conditions, a motion can be both stochastic (ie., induced by a
realization of a stochastic process) and chaotic (i.e., sensitive to
initial conditions). (See also Seki et al., 1993.)

Proofs used in Melnikov theory require that (i) the excitation
terms be uniformly bounded and uniformly continuous, and (ii)
the excitation and dissipation terms be asymptotically small. The
first requirement was shown to be consistent with the



application of Melnikov theory to systems excited by a wide class
of random processes, including processes approximating as
closely as desired broadband Gaussian noise (¢€.g., by using the
Shinozuka representation -- see Shinozuka, 1971, Shinozuka and
Deodatis, 1991), white noise, shot noise, and dichotomous noise
(Frey and Simiu, 1993; Simiu and Hagwood, 1994; Frey and
Simiu, 1995). It was also shown that the second requirement
can be considerably relaxed in practice, that is, even if the
excitation and dissipation terms are relatively large, Melnikov
theory can be helpful in the search for chaos (Guckenheimer
and Holmes, 1983; Moon, 1987), and for selecting appropriate
control force frequencies and amplitudes to increase mean exit
times (Franaszek and Simiu, 1995).
For definiteness we consider the equation

I =-V(2) + [yG() - p2)] 1)

where g,y are constants, >0, and V(z) is a potential function.
We assume that: (i) the unperturbed system (e=0) is
integrable; (ii) V(z) has the shape of a multiple well so that the
unperturbed system has a center at the bottom of each well and
a saddle point at the top of the barrier between two adjacent
wells, and that the stable and unstable manifolds emanating
from the saddle point of the unperturbed system are homoclinic
or heteroclinic; and (iii) e is sufficiently (though not
asymptotically) small. Finally, we assume G(t) is a random
process. As a typical example belonging to the class of systems
just described we consider in this note the Duffing equation,
which has potential

V(z) = 2942212, )
homoclinic orbits with coordinates

2 (0)=(2)Y%sech(t);  2(t)=(2)%sech(t)tanh(t) (33, 3b)
and a modulus of the Fourier transform of the function
h(t)=2(-t)

S(w) =(2)1/21(osech(1rm/2). 4

The function S{w) is referred to as the Melnikov relative scale
factor (Beigie et al., 1992). We also note for later use that

c= [ 23(r)dr = 4/3 G)

As indicated earlier, the Melnikov approach is also applicable to
systems of higher order, including spatially-extended dynamical
systems and systems with multiplicative noise. For this reason
this is also true of the arguments on Melnikov-based open-loop
control developed in this note.
Associated with Eq. 1 is a Melnikov process with the
expression
©
M(t) = -gc + v h(r)G(t-r)dr. ©6)

-0

898

Any realization of the Melnikov process represents the distance
between the stable and unstable manifolds of Eq. 1 (e»0)
corresponding to a realization of the random process G(t).

The mean zero upcrossing time, 7, of the Melnikov process
induced by the excitation is a measure of the mean time of exit
from a well, 7, (Simiu, 1995). For any given system, increasing
T - and 7, -- by using an open-loop control approach can be
achieved by adding to the excitation eyG(t) a control force
€y, G(t), where y_ has the same sign as .

A trivial choice of the open-loop control force would be
G(t)=-G(t). Since the net excitation would then be smaller than
eyG(t), it is seen from Eq. 6 that the addition of the control
force would decrease the ordinates of the Melnikov process and
increase its mean zero upcrossing time. It is clear that it would
also result in an increased mean exit time for the system.

For this trivial choice of the control force, the ratio between
the average power of the exciting force and the average power
of the control force is Q=y /ycz. We seek to use the
information contained in the Melnikov relative scale factor S(w)
to obtain open-loop control forces that would achieve results
comparable to those achieved by the trivial control, but with
considerably more effectiveness, that is, with an increased power
ratio Q.

From Egq. 6 it follows that the spectral density of the Melnikov
process for the uncontrolled system is

2P 4(0)=5%(0)[2rF(w)] %)

where S(w) is the modulus of the Fourier transform of h(t), and
27¥(w) is the spectral density of the random process G(t). To
illustrate Eq. 7, we consider the Duffing equation, for which
S(w) is given by Eq. 4, and the process G(t) with spectral
density (Fig. 1)
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Fig. 1. Spectral density of excitation.



To a first approximation this spectrum is representative of low-
frequency fluctuations of the horizontal wind speed (Van der
Hoven, 1957). The functions Sz(o)) and 2r¥(w)S%(w) are
represented in Figs. 2a and 2b, respectively. Figs. 1 and 2 show
that, owing to the shape of S(w) -- which plays the role of an
admittance function -- only part of the frequency components
of the excitation G(t) contribute significantly to the spectral
density of the uncontrolled system’s Melnikov process (for
example, components with frequencies w>4 are suppressed;
components with frequencies 2.5<w<4 are very strongly
reduced).

The following approach appears reasonable. Instead of G (t)=-
G(t), it would be more efficient to apply a control force
obtained from the function -G(t) by filtering out from this
function those frequency components that do not contribute

§¥(w)

4
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(b)
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Fig. 2. (a) Square of Melnikov relative scale factor; (b) Spectral
density of Melnikov process.
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significantly to the spectral density ¥(w). The advantage of this
approach over the trivial approach G (t)=-G(t) is that, in
general, it would reduce significantly the power needed for the
system’s control, while achieving a comparable reduction of (i)
the ordinates -- and the mean zero upcrossing time -- of the
controlled system’s Melnikov process and, hence, (ii) the
system’s mean exit time.

Like its trivial counterpart, the approach just described is not
feasible owing to practical limitations on the operation of the
control system. These limitations entail non-zero time lags
between sensing of a signal and the actuator response. In
addition, the practical filters may entail other inefficiencies,
although the opposite can be the case if the filter design is
judicious. In the next section we present results of numerical
simulations aimed at illustrating the potential of our approach,
modified to account for practical control system limitations.

NUMERICAL SIMULATIONS

We considered the Duffing equation (Egs. 1 and 2), ¢=0.1
and g=0.45. We examined two cases: (1) 22 P(w) is given by Eq.
8; (2) 27F(w)=2x/5 for 0<w<S5 and 27'F(w)=0 otherwise.

We first estimated by numerical simulation the mean exit rate
for the uncontrolled system. We then estimated the mean exit
rate for the system with control forces. We considered four
types of control force. The first type of control force, denoted
by (a) and referred to here as trivial control force, has the
expression ey, G(t-r ). The second type, denoted by (b) and
referred to here as ideal control force, was obtained by passing
the function -ey;G(t-7,) through an ideal filter that suppresses
all the Fourier components for 0sw <®; and &> w,, and leaves
the other components unchanged. The third type, denoted by
(¢) and referred to here as practical-filter control force, was
obtained by passing the function -evy,G(t-r,) through the filter
with impulse response represented in Fig. 3 (a=0.1, b=2.25).
The fourth type, denoted by (d) and referred to here as
modified practical-filter control force, was obtained by passing

g(t)

2a+b 2a+2b

-1/b+4- >

Fig. 3. Impulse response of a two-parameter filter with initial
response and recoil.



the function -ey ., G(t-r.) through the filter with impulse
response represented in Fig. 3 (a=0.1, b=2.25), and then
suppressing from the output all Fourier components for
0sw<w; and w>w, while leaving the other components
unchanged.

The time lag was assumed to be 7,=0.1. The frequencies @,
and o, defining the intervals over which inefficient components
were suppressed in (b) and (d) were chosen by examining the
spectra of the Melnikov processes. The choices were ©;=0.3,
wp=2.5 (case 1) and w,=0.3, w,=2.0 (case 2).

The values of the coefficients y, and y ; were chosen so that
the control forces (a) and (b) have the same average power.
(To within a constant, the average power is simply the variance
of the control force.) Similarly, the values of v, and y,, were
chosen so that the control forces (¢) and (d) have the same
power. We assumed y;=0.5 and v =0.5. The equal average
power criterion yielded y,=0.195 and y_,=0.167 for case 1,
and vy, =0.347 and y.,=0.292 for case 2.

The real and imaginary parts of the transfer function of the
filter of Fig. 3 are

R(v)=r2(amﬂ)cos(am)-rz(am/Z)cos(Za+b)m (73)

1.8
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Fig. 4. (a) Gain and (b) phase angle for filter of Fig. 3 with
a=0.1 and b=2.75.
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I(m)=-r2(am/2)sin(am)+rz(bm/2)sin(2a+b)m (7b)
where r(x)=sin(x)x. Equations 7 were obtained from
expressions available, e.g., in Papoulis (1962).) We show in Fig.
4 the dependence on frequency of the filter gain and phase.
The numerical simulations were performed by the adaptive
step-size Runge-Kutta method. The realizations of the excitation
process G(t) were simulated by sums of twenty-five sine and
cosine terms with equally spaced frequencies and amplitudes
distributed normally with zero mean and variance 27%(w)A®,
where Ao is the frequency increment (Rice, 1954). For each
realization the initial points were chosen randomly and the
trajectories were integrated for a time interval T, =1000T,
where T=22/w .. and @, is the maximum energy-containing
frequency of the spectrum of G(t). The number of zero
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Fig. 5. Case 1: (i) Escape rate n, for uncontrolled osciltator
subjected to noise o=ev; (ii) Ratio ngn , between escape
rate of controlied and uncontrolled system. Curves (a)
(b), (¢), (d) are described in the text; o=ey.




crossings was counted for each of a total of 800 realizations. A
similar procedure was applied to the controlled system.

The results are shown for cases 1 and 2 in Figs. 5 and 6,
where o=¢y.

DISCUSSION

The benefit that may in principle be derived from the
knowledge of the Melnikov properties of the system can be
assessed from a comparison of mean exit rates induced by a
control force modified to take advantage of that knowledge, on
the one hand, and by the unmodified counterpart of that force,
on the other. Recall that we considered two types of loading:
case 1, corresponding to the excitation spectrum of Eq. 8 (Fig.
2b), and case 2, corresponding to a uniform excitation spectrum
for 0<w<S5, and a vanishing spectrum for w25.

0.12
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Fig. 6. Case 2: same legend as for Fig. 5.
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Recall also that in Figs. 5 and 6 curves (a) correspond to
trivial control forces, that is, forces equal to 0.5¢yG(t-0.1),
where eyG(t) denotes the excitation force. Curves (b)
correspond to forces obtained from the trivial control forces by
climinating inefficient components, and then amplified so that
they have the same average power as the trivial forces. The use
of knowledge inherent in the Melnikov properties of the system
is seen to be useful in both cases 1 and 2. Note that the benefit
due to the Melnikov-based control force is significantly stronger
in case 1. This is due to the respective relative shapes of the
Melnikov scale factor and the spectral density of the excitation.
Curves (c) and (d) are the counterparts of curves (a) and (b)
for the practical-filter control forces. Comments similar to those
made for curves (a) and (b) are applicable for curves (¢) and
(d). The results of Figs. 5 and 6 also show that the benefits that
accrue from the use of knowledge of Melnikov properties can
also depend significantly upon the type of filter.

CONCLUSIONS

A Melnikov-based open-loop approach to the control of a
wide class of nonlinear stochastic systems was proposed. The
aim of the proposed approach is to achieve a relatively efficient
stabilization of the system. Exploratory numerical simulations
suggested that the information contained in the Melnikov
relative scale factors can help to achieve this objective. It is
emphasized that our calculations fully accounted for nonlinearity
of the system at hand.

The degree to which an efficient Melnikov-based open-loop
control can be accomplished in practice depends upon the
system under consideration (i.e., upon its Melnikov scale
factors), the spectral density of the excitation, and the quality of
the filter design. The intent of this note is not to study the filter
problem in the context of Melnikov-based open-loop control.
Rather, it is to draw the attention of control specialists to the
approach proposed herein, in the belief that, whether used
singly or as a component of a more complex control strategy, it
may become a useful addition to the current body of nonlinear
control theory and practice.
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